Nudged Elastic Band¶
In this tutorial, we will determine the activation energies of Li diffusion along the [010] and [001] directions (referred to as paths b and c respectively) in lithium iron phosphate (LiFePO_4), a cathode material for lithium ion batteries.
DFT references energies are:
Barrier heights:
path b = 0.27 eV
path c = 2.5 eV
(see table 1 in https://doi.org/10.1039/C5TA05062F)
You can toggle the following to investigate different models:
[ ]:
model_params = {"arch": "mace_mp", "model_path": "medium-0b3"}
# model_params = {"arch": "mace_mp", "model_path": "medium-mpa-0"}
# model_params = {"arch": "mace_mp", "model_path": "medium-omat-0"}
# model_params = {"arch": "chgnet"}
# model_params = {"arch": "sevennet"}
Set up environment (optional)¶
These steps are required for Google Colab, but may work on other systems too:
[ ]:
# import locale
# locale.getpreferredencoding = lambda: "UTF-8"
# !python3 -m pip install janus-core[all]
[ ]:
from ase.visualize import view
from ase.io import read
from data_tutorials.data import get_data
from janus_core.calculations.geom_opt import GeomOpt
from janus_core.calculations.neb import NEB
Use data_tutorials
to get the data required for this tutorial:
[ ]:
get_data(
# url="https://raw.githubusercontent.com/stfc/janus-core/main/tests/data/",
url="https://raw.githubusercontent.com/stfc/janus-tutorials/main/neb/data/",
filename="LiFePO4_supercell.cif",
folder="data",
)
Preparing end structures¶
The initial structure can be downloaded from the Materials Project (mp-19017):
[ ]:
LFPO = read("data/LiFePO4_supercell.cif")
view(LFPO,viewer="x3d")
First, we will relax the supercell:
[ ]:
GeomOpt(struct=LFPO, **model_params).run()
view(LFPO,viewer="x3d")
Next, we will create the start and end structures:
[ ]:
# NEB path along b and c directions have the same starting image.
# For start bc remove site 5
LFPO_start_bc = LFPO.copy()
del LFPO_start_bc[5]
# For end b remove site 11
LFPO_end_b = LFPO.copy()
del LFPO_end_b[11]
# For end c remove site 4
LFPO_end_c = LFPO.copy()
del LFPO_end_c[4]
Path b¶
We can now calculate the barrier height along path b.
This also includes running geometry optimization on the end points of this path.
[ ]:
n_images = 7
interpolator="pymatgen" # ASE interpolation performs poorly in this case
neb_b = NEB(
init_struct=LFPO_start_bc,
final_struct=LFPO_end_b,
n_images=n_images,
interpolator=interpolator,
minimize=True,
fmax=0.1,
**model_params,
)
[ ]:
results = neb_b.run()
The results include the barrier (without any interpolation between highest images) and maximum force at the point in the simulation
[ ]:
print(results)
We can also plot the band:
[ ]:
fig = neb_b.nebtools.plot_band()
Path c¶
We can calculate the barrier height along path c similarly
[ ]:
n_images = 7
interpolator="pymatgen"
neb_c = NEB(
init_struct=LFPO_start_bc,
final_struct=LFPO_end_c,
n_images=n_images,
interpolator=interpolator,
minimize=True,
fmax=0.1,
**model_params,
)
[ ]:
results = neb_c.run()
[ ]:
print(results)
[ ]:
fig = neb_c.nebtools.plot_band()