Molecular Dynamics¶
Set up environment (optional)¶
These steps are required for Google Colab, but may work on other systems too:
[1]:
# import locale
# locale.getpreferredencoding = lambda: "UTF-8"
# ! pip uninstall torch torchaudio torchvision numpy -y
# ! uv pip install janus-core[all] data-tutorials torch==2.5.1 --system
# get_ipython().kernel.do_shutdown(restart=True)
[2]:
from ase.build import bulk
from ase.io import read, write
from weas_widget import WeasWidget
from janus_core.helpers.stats import Stats
from janus_core.processing import post_process
import yaml
import numpy as np
import matplotlib.pyplot as plt
NVT¶
In janus_core
we can simulate MD in various ensembles. To start we will look at a simple NVT simulation of NaCl.
Using the ASE we can build an NaCl crystal sample. Which we can look at using Weas.
[3]:
NaCl = bulk("NaCl", "rocksalt", a=5.63, cubic=True)
NaCl = NaCl * (2, 2, 2)
write("../data/NaCl.xyz", NaCl)
v=WeasWidget()
v.from_ase(NaCl)
v
[3]:
Running the simulation¶
For our simulation we can prepare a config YAML file for the janus md
command.
Here we set the ensemble and the structure.
The following 2 options specify the simulation steps to perform in MD and the MD temperature in K. The default timestep is 1 fs.
The final 2 options set the frequency to write statistics and trajectory frames.
If you have a GPU on you, then the commented out option will speed things up considerably.
[4]:
%%writefile config-nvt.yml
ensemble: nvt
struct: ../data/NaCl.xyz
steps: 250
temp: 100
stats_every: 10
traj_every: 10
restart_every: 50
tracker: False
# If you have an Nvidia GPU.
#device: cuda
Writing config-nvt.yml
As with other janus_core
functionalities the help method will show the available options along with units
[5]:
!janus md --help
Usage: janus md [OPTIONS]
Run molecular dynamics simulation, and save trajectory and statistics.
╭─ Options ────────────────────────────────────────────────────────────────────╮
│ * --ensemble [nph|npt|nve|nv Name of │
│ t|nvt-nh|nvt-cs thermodynamic │
│ vr|npt-mtk] ensemble. │
│ [default: None] │
│ [required] │
│ * --struct PATH Path of structure │
│ to simulate. │
│ [default: None] │
│ [required] │
│ --steps INTEGER Number of steps │
│ in simulation. │
│ [default: 0] │
│ --timestep FLOAT Timestep for │
│ integrator, in │
│ fs. │
│ [default: 1.0] │
│ --temp FLOAT Temperature, in │
│ K. │
│ [default: 300.0] │
│ --thermostat-t… FLOAT Thermostat time │
│ for NPT, NPT-MTK │
│ or NVT │
│ Nosé-Hoover │
│ simulation, in │
│ fs. Default is 50 │
│ fs for NPT and │
│ NVT Nosé-Hoover, │
│ or 100 fs for │
│ NPT-MTK. │
│ [default: None] │
│ --barostat-time FLOAT Barostat time for │
│ NPT, NPT-MTK or │
│ NPH simulation, │
│ in fs. Default is │
│ 75 fs for NPT and │
│ NPH, or 1000 fs │
│ for NPT-MTK. │
│ [default: None] │
│ --bulk-modulus FLOAT Bulk modulus for │
│ NPT or NPH │
│ simulation, in │
│ GPa. │
│ [default: 2.0] │
│ --pressure FLOAT Pressure for NPT │
│ or NPH │
│ simulation, in │
│ GPa. │
│ [default: 0.0] │
│ --friction FLOAT Friction │
│ coefficient for │
│ NVT simulation, │
│ in fs^-1. │
│ [default: 0.005] │
│ --taut FLOAT Temperature │
│ coupling time │
│ constant for NVT │
│ CSVR simulation, │
│ in fs. │
│ [default: 100.0] │
│ --thermostat-c… INTEGER Number of │
│ variables in │
│ thermostat chain │
│ for NPT MTK │
│ simulation. │
│ [default: 3] │
│ --barostat-cha… INTEGER Number of │
│ variables in │
│ barostat chain │
│ for NPT MTK │
│ simulation. │
│ [default: 3] │
│ --thermostat-s… INTEGER Number of │
│ sub-steps in │
│ thermostat │
│ integration for │
│ NPT MTK │
│ simulation. │
│ [default: 1] │
│ --barostat-sub… INTEGER Number of │
│ sub-steps in │
│ barostat │
│ integration for │
│ NPT MTK │
│ simulation. │
│ [default: 1] │
│ --ensemble-kwa… DICT Keyword arguments │
│ to pass to │
│ ensemble │
│ initialization. │
│ Must be passed as │
│ a dictionary │
│ wrapped in │
│ quotes, e.g. │
│ "{'key': value}". │
│ [default: None] │
│ --arch [mace|mace_mp|m MLIP architecture │
│ ace_off|m3gnet| to use for │
│ chgnet|alignn|s calculations. │
│ evennet|nequip| [default: │
│ dpa3|orb|matter mace_mp] │
│ sim] │
│ --device [cpu|cuda|mps|x Device to run │
│ pu] calculations on. │
│ [default: cpu] │
│ --model-path TEXT Path to MLIP │
│ model. │
│ [default: None] │
│ --read-kwargs DICT Keyword arguments │
│ to pass to │
│ ase.io.read. Must │
│ be passed as a │
│ dictionary │
│ wrapped in │
│ quotes, e.g. │
│ "{'key': value}". │
│ By default, │
│ read_kwargs['ind… │
│ = -1, so only the │
│ last structure is │
│ read. │
│ [default: None] │
│ --calc-kwargs DICT Keyword arguments │
│ to pass to │
│ selected │
│ calculator. Must │
│ be passed as a │
│ dictionary │
│ wrapped in │
│ quotes, e.g. │
│ "{'key': value}". │
│ For the default │
│ architecture │
│ ('mace_mp'), │
│ "{'model': │
│ 'small'}" is set │
│ unless │
│ overwritten. │
│ [default: None] │
│ --equil-steps INTEGER Maximum number of │
│ steps at which to │
│ perform │
│ optimization and │
│ reset │
│ [default: 0] │
│ --minimize --no-minimize Whether to │
│ minimize │
│ structure during │
│ equilibration. │
│ [default: │
│ no-minimize] │
│ --minimize-eve… INTEGER Frequency of │
│ minimizations. │
│ Default disables │
│ minimization │
│ after beginning │
│ dynamics. │
│ [default: -1] │
│ --minimize-kwa… DICT Keyword arguments │
│ to pass to │
│ optimizer. Must │
│ be passed as a │
│ dictionary │
│ wrapped in │
│ quotes, e.g. │
│ "{'key': value}". │
│ [default: None] │
│ --rescale-velo… --no-rescale-ve… Whether to │
│ rescale │
│ velocities during │
│ equilibration. │
│ [default: │
│ no-rescale-veloc… │
│ --remove-rot --no-remove-rot Whether to remove │
│ rotation during │
│ equilibration. │
│ [default: │
│ no-remove-rot] │
│ --rescale-every INTEGER Frequency to │
│ rescale │
│ velocities during │
│ equilibration. │
│ [default: 10] │
│ --file-prefix PATH Prefix for output │
│ files, including │
│ directories. │
│ Default directory │
│ is │
│ ./janus_results, │
│ and default │
│ filename prefix │
│ is inferred from │
│ the input │
│ stucture │
│ filename. │
│ [default: None] │
│ --restart --no-restart Whether │
│ restarting │
│ dynamics. │
│ [default: │
│ no-restart] │
│ --restart-auto --no-restart-au… Whether to infer │
│ restart file if │
│ restarting │
│ dynamics. │
│ [default: │
│ restart-auto] │
│ --restart-stem PATH Stem for restart │
│ file name. │
│ Default inferred │
│ from │
│ `file_prefix`. │
│ [default: None] │
│ --restart-every INTEGER Frequency of │
│ steps to save │
│ restart info. │
│ [default: 1000] │
│ --rotate-resta… --no-rotate-res… Whether to rotate │
│ restart files. │
│ [default: │
│ no-rotate-restar… │
│ --restarts-to-… INTEGER Restart files to │
│ keep if rotating. │
│ [default: 4] │
│ --final-file PATH File to save │
│ final │
│ configuration at │
│ each temperature │
│ of similation. │
│ Default inferred │
│ from │
│ `file_prefix`. │
│ [default: None] │
│ --stats-file PATH File to save │
│ thermodynamical │
│ statistics. │
│ Default inferred │
│ from │
│ `file_prefix`. │
│ [default: None] │
│ --stats-every INTEGER Frequency to │
│ output │
│ statistics. │
│ [default: 100] │
│ --traj-file PATH File to save │
│ trajectory. │
│ Default inferred │
│ from │
│ `file_prefix`. │
│ [default: None] │
│ --traj-append --no-traj-append Whether to append │
│ trajectory. │
│ [default: │
│ no-traj-append] │
│ --traj-start INTEGER Step to start │
│ saving │
│ trajectory. │
│ [default: 0] │
│ --traj-every INTEGER Frequency of │
│ steps to save │
│ trajectory. │
│ [default: 100] │
│ --temp-start FLOAT Temperature to │
│ start heating, in │
│ K. │
│ [default: None] │
│ --temp-end FLOAT Maximum │
│ temperature for │
│ heating, in K. │
│ [default: None] │
│ --temp-step FLOAT Size of │
│ temperature steps │
│ when heating, in │
│ K. │
│ [default: None] │
│ --temp-time FLOAT Time between │
│ heating steps, in │
│ fs. │
│ [default: None] │
│ --write-kwargs DICT Keyword arguments │
│ to pass to │
│ ase.io.write when │
│ saving results. │
│ Must be passed as │
│ a dictionary │
│ wrapped in │
│ quotes, e.g. │
│ "{'key': value}". │
│ [default: None] │
│ --post-process… DICT Keyword arguments │
│ to pass to │
│ post-processer. │
│ Must be passed as │
│ a dictionary │
│ wrapped in │
│ quotes, e.g. │
│ "{'key': value}". │
│ [default: None] │
│ --correlation-… DICT Keyword arguments │
│ to pass to md for │
│ on-the-fly │
│ correlations. │
│ Must be passed as │
│ a list of │
│ dictionaries │
│ wrapped in │
│ quotes, e.g. │
│ "[{'key' : │
│ values}]". │
│ [default: None] │
│ --seed INTEGER Random seed for │
│ numpy.random and │
│ random functions. │
│ [default: None] │
│ --log PATH Path to save logs │
│ to. Default is │
│ inferred from │
│ `file_prefix` │
│ [default: None] │
│ --tracker --no-tracker Whether to save │
│ carbon emissions │
│ of calculation │
│ [default: │
│ tracker] │
│ --summary PATH Path to save │
│ summary of │
│ inputs, start/end │
│ time, and carbon │
│ emissions. │
│ Default is │
│ inferred from │
│ `file_prefix`. │
│ [default: None] │
│ --config TEXT Configuration │
│ file. │
│ --help Show this message │
│ and exit. │
╰──────────────────────────────────────────────────────────────────────────────╯
We can begin our simulation by calling the following shell command. Which may take a few minutes on a CPU.
[6]:
! janus md --config config-nvt.yml
/Users/elliottkasoar/Documents/PSDI/janus-core/.venv/lib/python3.12/site-packages/e3nn/o3/_wigner.py:10: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
_Jd, _W3j_flat, _W3j_indices = torch.load(os.path.join(os.path.dirname(__file__), 'constants.pt'))
cuequivariance or cuequivariance_torch is not available. Cuequivariance acceleration will be disabled.
Using Materials Project MACE for MACECalculator with /Users/elliottkasoar/.cache/mace/20231210mace128L0_energy_epoch249model
Using float64 for MACECalculator, which is slower but more accurate. Recommended for geometry optimization.
/Users/elliottkasoar/Documents/PSDI/janus-core/.venv/lib/python3.12/site-packages/mace/calculators/mace.py:139: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
torch.load(f=model_path, map_location=device)
The outputs¶
While we are waiting for the simulation we can familiarise ourselves with the output files you will see.
The directory janus_results
will be populated with the following key files named NaCl-nvt-T100.0-
stats.dat
traj.extxyz
final.extxyz
md-log.yml
md-summary.yml
The stats file contains core statistical data on the simulation, including the step, wall-time, temperature, volume, and pressure tensor.
You could view this now while the simulation is running by the shell command
$ head janus_results/NaCl-nvt-T100.0-stats.dat
Giving something like the following
# Step | Real_Time [s] | Time [fs] | Epot/N [eV] ...
0 1.044 0.00 -3.37876019e+00 ...
10 8.772 10.00 -3.37789444e+00 ...
The first line in the stats files also includes the units used. Temperatures are all in K, lengths in Angstroms, and Pressures in GPa.
The traj
and final
files including the MD trajectory and the final configuration in EXTXYZ format.
md-log
and md-summary
give information about the running of the simulation and a summary of the options used in janus-md
respectively. The latter in particular is worth a look as it also includes the default values for example the bulk_modulus
.
$ cat janus_results/NaCl-nvt-T100.0-md-summary.yml
command: janus md
config:
arch: mace_mp
barostat_chain: 3
barostat_substeps: 1
barostat_time: null
bulk_modulus: 2.0
calc_kwargs: {}
...
These output files provide a full record of what you have done alongside the standard MD outputs.
Analysing the simulation¶
Once the simulation has completed we can make use of the utilities in janus_core
. In particular janus_core.helpers.stats.Stats
which makes viewing the stats.dat
file straightforward (alternatively the file is readable by np.loadtxt
).
Passing the path to our statistics we can observe the temperature, volume, and pressure resulting from the potential in NVT.
[7]:
stats = Stats("janus_results/NaCl-nvt-T100.0-stats.dat")
fig, ax = plt.subplots(ncols=3, figsize=(10,3))
ax[0].plot(stats[0], stats[5])
ax[0].set_xlabel("Step")
ax[0].set_ylabel("Temperature")
ax[1].plot(stats[0], stats[8])
ax[1].set_xlabel("Step")
ax[1].set_ylabel("Volume")
ax[2].plot(stats[0], stats[9])
ax[2].set_xlabel("Step")
ax[2].set_ylabel("Pressure")
plt.tight_layout()

Since we have been saving the trajectory every 10 steps we can also see a nice movie of our computers labour.
[8]:
traj = read("janus_results/NaCl-nvt-T100.0-traj.extxyz", index=":")
v=WeasWidget()
v.from_ase(traj)
v.avr.model_style = 1
v.avr.show_hydrogen_bonds = True
v
[8]:
Another helper provided in janus_core
is the post processing module from janus_core.processing.post_process
. This enables velocity auto-correlation function and radial distribution function computation from trajectory files.
Using our data we can take a look at the RDF, and VAF
[9]:
rdf = post_process.compute_rdf(traj, rmax=5.0, nbins=50)
vaf = post_process.compute_vaf(traj)
fig, ax = plt.subplots(ncols=2, figsize=(8,4))
ax[0].plot(rdf[0], rdf[1])
ax[0].set_ylabel("RDF")
ax[0].set_xlabel("Distance / Å")
ax[1].plot(vaf[0]*10, vaf[1][0]/vaf[1][0][0])
ax[1].set_ylabel("VAF")
ax[1].set_xlabel("Lag time, fs")
plt.tight_layout()

Continuing the simulation¶
Using the final configuration we can continue the simulation easily. We can make use of our old config but override some of the values manually.
Here we indicate we want to restart with --restart
, and pass our parameters from before via --config
. janus_core
will find our old files and begin dynamics again from the last restart file. For us this happens to be at step 250. Because we override the steps with --steps 300
we get an additional 50 simulation steps appended to our statistics and trajectory files.
[10]:
! janus md --restart --steps 300 --config config-nvt.yml
/Users/elliottkasoar/Documents/PSDI/janus-core/.venv/lib/python3.12/site-packages/e3nn/o3/_wigner.py:10: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
_Jd, _W3j_flat, _W3j_indices = torch.load(os.path.join(os.path.dirname(__file__), 'constants.pt'))
cuequivariance or cuequivariance_torch is not available. Cuequivariance acceleration will be disabled.
Using Materials Project MACE for MACECalculator with /Users/elliottkasoar/.cache/mace/20231210mace128L0_energy_epoch249model
Using float64 for MACECalculator, which is slower but more accurate. Recommended for geometry optimization.
/Users/elliottkasoar/Documents/PSDI/janus-core/.venv/lib/python3.12/site-packages/mace/calculators/mace.py:139: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
torch.load(f=model_path, map_location=device)
Using Materials Project MACE for MACECalculator with /Users/elliottkasoar/.cache/mace/20231210mace128L0_energy_epoch249model
Using float64 for MACECalculator, which is slower but more accurate. Recommended for geometry optimization.
[11]:
stats = Stats("janus_results/NaCl-nvt-T100.0-stats.dat")
fig, ax = plt.subplots()
ax.plot(stats[0], stats[5])
ax.set_xlabel("Step")
ax.set_ylabel("Temperature")
[11]:
Text(0, 0.5, 'Temperature')

Correlations at runtime¶
Alongside post-processing of trajectory files janus_core
includes a correlations module to calculate correlation functions at runtime that do not require trajectory storage.
For example beginning again from our initial structure we can compute the VAF online with the addition of correlation_kwargs.
In these options we specify a list of correlations \(\langle a b \rangle\) to compute. First the VAF by requesting a correlation with Velocity
as the quantity \(a\) (\(b\) is assumed to be the same if not set) up to \(250\) correlation points (lag times). Additionally we also create a stress auto-correlation function by forming a second correlation with Stress
. In this we also set the stress components to be correlated over, again \(b\) left unspecified means it is
the same as a. These extra settings will give us the correlation function \(\frac{1}{3}(\langle \sigma_{xy}\sigma_{xy}\rangle+\langle \sigma_{yz}\sigma_{yz}\rangle+\langle \sigma_{zx}\sigma_{zx}\rangle)\).
By default a correlation is updated every step. This can be controlled by the option update_frequency
.
[12]:
%%writefile config-nvt-cor.yml
ensemble: nvt
struct: ../data/NaCl.xyz
steps: 250
temp: 100
stats_every: 10
traj_every: 250
correlation_kwargs:
vaf:
a: Velocity
points: 250
saf:
a: Stress
a_kwargs: {'components': ['xy', 'yz', 'zx']}
points: 250
tracker: False
# If you have an Nvidia GPU.
#device: cuda
Writing config-nvt-cor.yml
[13]:
! janus md --config config-nvt-cor.yml
/Users/elliottkasoar/Documents/PSDI/janus-core/.venv/lib/python3.12/site-packages/e3nn/o3/_wigner.py:10: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
_Jd, _W3j_flat, _W3j_indices = torch.load(os.path.join(os.path.dirname(__file__), 'constants.pt'))
cuequivariance or cuequivariance_torch is not available. Cuequivariance acceleration will be disabled.
Using Materials Project MACE for MACECalculator with /Users/elliottkasoar/.cache/mace/20231210mace128L0_energy_epoch249model
Using float64 for MACECalculator, which is slower but more accurate. Recommended for geometry optimization.
/Users/elliottkasoar/Documents/PSDI/janus-core/.venv/lib/python3.12/site-packages/mace/calculators/mace.py:139: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
torch.load(f=model_path, map_location=device)
Analysing correlations¶
We can load up the new file NaCl-nvt-T100.0-cor.dat
which contains the correlation function we asked for in a YAML format.
Previously we computed the VAF using the trajectory saved every 10 frames, our result here will be more accurate at the expense of a longer runtime, but we do not require any trajectory data.
[14]:
with open("janus_results/NaCl-nvt-T100.0-cor.dat", "r") as cor:
data = yaml.safe_load(cor)
vaf = data["vaf"]
saf = data["saf"]
fig, ax = plt.subplots(ncols=2, figsize=(8,4))
ax[0].plot(vaf['lags'], np.array(vaf['value'])/vaf['value'][0], label="VAF every step (online)")
ax[0].set_ylabel("VAF")
ax[0].set_xlabel("Lag time, fs")
vaf_post = post_process.compute_vaf(traj)
ax[0].plot(vaf_post[0]*10, vaf_post[1][0]/vaf_post[1][0][0], label="VAF every 10 steps (post)")
ax[0].set_ylabel("VAF")
ax[0].set_xlabel("Lag time, fs")
ax[0].legend()
ax[1].plot(saf['lags'], np.array(saf['value'])/saf['value'][0])
ax[1].set_ylabel("SAF")
ax[1].set_xlabel("Lag time, fs")
plt.tight_layout()

Heating¶
janus_core
has a facility for heating or cooling during MD. This is controlled by 4 options.
temp_start
: the starting temperature in Kelvin.temp_end
: the final temperature in Kelvin.temp_step
: the temperature increment in Kelvin.temp_time
: the number of time steps at each temperature increment.
In this context the options temp
and steps
will apply in a normal MD run after the heating has finished.
We can make use of this to perform a naive estimation of melting in NPT by progressively increasing temperature. To keep the cell angles fixed we also apply a mask via ``ensemble_kwargs``` which are passed to ASE’s thermo-/baro-stats.
We are going to cheat by using a pre-prepared structure NaCl-1070.extxyz
. This was equilibrated from ../data/NaCl.xyz
in a similar way that we are about to continue but over many more steps. We can have a quick look at our starting point.
[15]:
v=WeasWidget()
structure = read("../data/NaCl-1040.extxyz")
structure.wrap()
v.from_ase(structure)
v
[15]:
We add in our heating parameters and npt options in a new config and run it.
[16]:
%%writefile config-npt-heat.yml
ensemble: npt
ensemble_kwargs:
mask: [[1,0,0],[0,1,0],[0,0,1]]
struct: ../data/NaCl-1040.extxyz
temp_start: 1040
temp_end: 1080
temp_step: 5
temp_time: 25
stats_every: 10
traj_every: 10
tracker: False
# If you have an Nvidia GPU.
#device: cuda
Writing config-npt-heat.yml
[17]:
! janus md --config config-npt-heat.yml
/Users/elliottkasoar/Documents/PSDI/janus-core/.venv/lib/python3.12/site-packages/e3nn/o3/_wigner.py:10: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
_Jd, _W3j_flat, _W3j_indices = torch.load(os.path.join(os.path.dirname(__file__), 'constants.pt'))
cuequivariance or cuequivariance_torch is not available. Cuequivariance acceleration will be disabled.
Using Materials Project MACE for MACECalculator with /Users/elliottkasoar/.cache/mace/20231210mace128L0_energy_epoch249model
Using float64 for MACECalculator, which is slower but more accurate. Recommended for geometry optimization.
/Users/elliottkasoar/Documents/PSDI/janus-core/.venv/lib/python3.12/site-packages/mace/calculators/mace.py:139: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
torch.load(f=model_path, map_location=device)
[18]:
v=WeasWidget()
structure = read("janus_results/NaCl-1040-npt-T1040.0-T1080.0-p0.0-final.extxyz")
structure.wrap()
v.from_ase(structure)
v
[18]:
Extensions¶
Viscosity¶
Simulate liquid NaCl in NVE at about 1080 K and calculate the SAF as we have done before. Use the SAF to estimate the viscosity \(\eta = \frac{V}{3k_{b}T}\int \langle \sigma_{xy}\sigma_{xy}\rangle+ \langle \sigma_{yz}\sigma_{yz}\rangle+ \langle \sigma_{zx}\sigma_{zx}\rangle dt\). Experimentally the viscosity is \(1.030\) mN s m \({}^{-2}\) [1]. Long simulations and repeats are required for accuracy, but try 1000 fs.
You will find the pre-equilibrated structure NaCl-1040.xyz
useful!
[1] Janz, G.J., 1980. Molten salts data as reference standards for density, surface tension, viscosity, and electrical conductance: KNO3 and NaCl. Journal of physical and chemical reference data, 9(4), pp.791-830.
Melting¶
Try heating the NaCl crystal ../data/NaCl.xyz
up to 1080 K using the temperature ramp options in NPT. To keep cell angles constant, you will want to add the options
ensemble_kwargs:
mask: [[1,0,0],[0,1,0],[0,0,1]]
temp_time: 2000
would be good if you have a GPU. You can also “cheat” by staring from NaCl-1000.xyz
Experimentally NaCl melts at about 1074 Kelvin at atmospheric pressure.