Open In Colab

Nudged Elastic Band

In this tutorial, we will determine the activation energies of Li diffusion along the [010] and [001] directions (referred to as paths b and c respectively) in lithium iron phosphate (LiFePO_4), a cathode material for lithium ion batteries.

DFT references energies are:

  • Barrier heights:

    • path b = 0.27 eV

    • path c = 2.5 eV

(see table 1 in https://doi.org/10.1039/C5TA05062F)

You can toggle the following to investigate different models:

[1]:
model_params = {"arch": "mace_mp", "model": "medium-0b3"}
# model_params = {"arch": "mace_mp", "model": "medium-mpa-0"}
# model_params = {"arch": "mace_mp", "model": "medium-omat-0"}
# model_params = {"arch": "chgnet"}
# model_params = {"arch": "sevennet"}

Set up environment (optional)

These steps are required for Google Colab, but may work on other systems too:

[2]:
# import locale
# locale.getpreferredencoding = lambda: "UTF-8"

# ! pip uninstall torch torchaudio torchvision transformers numpy -y
# ! uv pip install janus-core[all] data-tutorials torch==2.5.1 --system
# get_ipython().kernel.do_shutdown(restart=True)
[3]:
from weas_widget import WeasWidget
from ase.io import read
from data_tutorials.data import get_data

from janus_core.calculations.geom_opt import GeomOpt
from janus_core.calculations.neb import NEB

Use data_tutorials to get the data required for this tutorial:

[4]:
get_data(
    # url="https://raw.githubusercontent.com/stfc/janus-core/main/tests/data/",
    url="https://raw.githubusercontent.com/stfc/janus-tutorials/main/neb/data/",
    filename="LiFePO4_supercell.cif",
    folder="data",
)
try to download LiFePO4_supercell.cif from https://raw.githubusercontent.com/stfc/janus-tutorials/main/neb/data/ and save it in data/LiFePO4_supercell.cif
saved in data/LiFePO4_supercell.cif

Preparing end structures

The initial structure can be downloaded from the Materials Project (mp-19017):

[5]:
LFPO = read("data/LiFePO4_supercell.cif")
v=WeasWidget()
v.from_ase(LFPO)
v.avr.model_style = 1
v.avr.show_hydrogen_bonds = True
v
[5]:

First, we will relax the supercell:

[6]:
GeomOpt(struct=LFPO, **model_params).run()

v1=WeasWidget()
v1.from_ase(LFPO)
v1.avr.model_style = 1
v1.avr.show_hydrogen_bonds = True
v1
/home/runner/work/janus-core/janus-core/.venv/lib/python3.12/site-packages/e3nn/o3/_wigner.py:10: UserWarning: Environment variable TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD detected, since the`weights_only` argument was not explicitly passed to `torch.load`, forcing weights_only=False.
  _Jd, _W3j_flat, _W3j_indices = torch.load(os.path.join(os.path.dirname(__file__), 'constants.pt'))
cuequivariance or cuequivariance_torch is not available. Cuequivariance acceleration will be disabled.
Downloading MACE model from 'https://github.com/ACEsuit/mace-mp/releases/download/mace_mp_0b3/mace-mp-0b3-medium.model'
Cached MACE model to /home/runner/.cache/mace/macemp0b3mediummodel
Using Materials Project MACE for MACECalculator with /home/runner/.cache/mace/macemp0b3mediummodel
Using float64 for MACECalculator, which is slower but more accurate. Recommended for geometry optimization.
Using head default out of ['default']
/home/runner/work/janus-core/janus-core/.venv/lib/python3.12/site-packages/mace/calculators/mace.py:143: UserWarning: Environment variable TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD detected, since the`weights_only` argument was not explicitly passed to `torch.load`, forcing weights_only=False.
  torch.load(f=model_path, map_location=device)
       Step     Time          Energy          fmax
LBFGS:    0 14:40:11     -762.842666        0.654854
LBFGS:    1 14:40:13     -763.038742        0.437508
LBFGS:    2 14:40:16     -763.090096        0.392867
LBFGS:    3 14:40:18     -763.119488        0.374220
LBFGS:    4 14:40:20     -763.172830        0.346620
LBFGS:    5 14:40:22     -763.213488        0.334927
LBFGS:    6 14:40:24     -763.256842        0.327520
LBFGS:    7 14:40:26     -763.297792        0.328964
LBFGS:    8 14:40:28     -763.342419        0.332009
LBFGS:    9 14:40:30     -763.385108        0.328513
LBFGS:   10 14:40:32     -763.427187        0.308144
LBFGS:   11 14:40:34     -763.474267        0.274918
LBFGS:   12 14:40:36     -763.528185        0.234548
LBFGS:   13 14:40:38     -763.579927        0.246328
LBFGS:   14 14:40:40     -763.627605        0.245408
LBFGS:   15 14:40:42     -763.684752        0.231582
LBFGS:   16 14:40:44     -763.766360        0.283626
LBFGS:   17 14:40:46     -763.855346        0.296599
LBFGS:   18 14:40:48     -763.931149        0.188692
LBFGS:   19 14:40:49     -763.965778        0.154808
LBFGS:   20 14:40:52     -763.996599        0.213159
LBFGS:   21 14:40:54     -764.039520        0.255107
LBFGS:   22 14:40:56     -764.108589        0.255570
LBFGS:   23 14:40:58     -764.175608        0.200210
LBFGS:   24 14:41:00     -764.208816        0.096659
[6]:

Next, we will create the start and end structures:

[7]:
# NEB path along b and c directions have the same starting image.
# For start bc remove site 5
LFPO_start_bc = LFPO.copy()
del LFPO_start_bc[5]

# For end b remove site 11
LFPO_end_b = LFPO.copy()
del LFPO_end_b[11]

# For end c remove site 4
LFPO_end_c = LFPO.copy()
del LFPO_end_c[4]

Path b

We can now calculate the barrier height along path b.

This also includes running geometry optimization on the end points of this path.

[8]:
n_images = 7
interpolator="pymatgen" # ASE interpolation performs poorly in this case

neb_b = NEB(
    init_struct=LFPO_start_bc,
    final_struct=LFPO_end_b,
    n_images=n_images,
    interpolator=interpolator,
    minimize=True,
    fmax=0.1,
    **model_params,
)
Using Materials Project MACE for MACECalculator with /home/runner/.cache/mace/macemp0b3mediummodel
Using float64 for MACECalculator, which is slower but more accurate. Recommended for geometry optimization.
Using head default out of ['default']
/home/runner/work/janus-core/janus-core/.venv/lib/python3.12/site-packages/mace/calculators/mace.py:143: UserWarning: Environment variable TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD detected, since the`weights_only` argument was not explicitly passed to `torch.load`, forcing weights_only=False.
  torch.load(f=model_path, map_location=device)
[9]:
results = neb_b.run()
       Step     Time          Energy          fmax
LBFGS:    0 14:41:02     -758.975432        1.930990
LBFGS:    1 14:41:04     -759.140669        0.711957
LBFGS:    2 14:41:05     -759.209571        0.514600
LBFGS:    3 14:41:07     -759.298948        0.404890
LBFGS:    4 14:41:09     -759.316304        0.265548
LBFGS:    5 14:41:10     -759.336518        0.252446
LBFGS:    6 14:41:12     -759.351338        0.330410
LBFGS:    7 14:41:14     -759.368546        0.309163
LBFGS:    8 14:41:16     -759.378014        0.229741
LBFGS:    9 14:41:18     -759.386280        0.221552
LBFGS:   10 14:41:20     -759.395290        0.278156
LBFGS:   11 14:41:21     -759.404981        0.291370
LBFGS:   12 14:41:23     -759.411852        0.192426
LBFGS:   13 14:41:25     -759.415355        0.075502
       Step     Time          Energy          fmax
LBFGS:    0 14:41:27     -758.975436        1.930961
LBFGS:    1 14:41:29     -759.140671        0.711930
LBFGS:    2 14:41:30     -759.209572        0.514582
LBFGS:    3 14:41:32     -759.298949        0.404887
LBFGS:    4 14:41:34     -759.316305        0.265544
LBFGS:    5 14:41:36     -759.336519        0.252446
LBFGS:    6 14:41:38     -759.351338        0.330395
LBFGS:    7 14:41:39     -759.368546        0.309158
LBFGS:    8 14:41:41     -759.378015        0.229745
LBFGS:    9 14:41:43     -759.386281        0.221556
LBFGS:   10 14:41:45     -759.395291        0.278147
LBFGS:   11 14:41:46     -759.404982        0.291359
LBFGS:   12 14:41:48     -759.411852        0.192423
LBFGS:   13 14:41:50     -759.415355        0.075502
                   Step     Time         fmax
NEBOptimizer[ode]:    0 14:42:26       1.5090
NEBOptimizer[ode]:    1 14:42:38       1.1032
NEBOptimizer[ode]:    2 14:42:50       0.9983
NEBOptimizer[ode]:    3 14:43:02       0.8704
NEBOptimizer[ode]:    4 14:43:14       0.8013
NEBOptimizer[ode]:    5 14:43:26       0.7712
NEBOptimizer[ode]:    6 14:43:38       0.7441
NEBOptimizer[ode]:    7 14:43:50       0.6738
NEBOptimizer[ode]:    8 14:44:02       0.4346
NEBOptimizer[ode]:    9 14:44:27       0.4299
NEBOptimizer[ode]:   10 14:44:39       0.4226
NEBOptimizer[ode]:   11 14:44:51       0.3946
NEBOptimizer[ode]:   12 14:45:03       0.2843
NEBOptimizer[ode]:   13 14:45:28       0.2726
NEBOptimizer[ode]:   14 14:45:40       0.2652
NEBOptimizer[ode]:   15 14:45:52       0.2612
NEBOptimizer[ode]:   16 14:46:04       0.2552
NEBOptimizer[ode]:   17 14:46:16       0.2323
NEBOptimizer[ode]:   18 14:46:40       0.2219
NEBOptimizer[ode]:   19 14:46:52       0.2141
NEBOptimizer[ode]:   20 14:47:04       0.2087
NEBOptimizer[ode]:   21 14:47:16       0.2055
NEBOptimizer[ode]:   22 14:47:28       0.2005
NEBOptimizer[ode]:   23 14:47:40       0.1809
NEBOptimizer[ode]:   24 14:48:03       0.1729
NEBOptimizer[ode]:   25 14:48:15       0.1664
NEBOptimizer[ode]:   26 14:48:27       0.1624
NEBOptimizer[ode]:   27 14:48:39       0.1598
NEBOptimizer[ode]:   28 14:48:52       0.1559
NEBOptimizer[ode]:   29 14:49:04       0.1409
NEBOptimizer[ode]:   30 14:49:16       0.2612
NEBOptimizer[ode]:   31 14:49:40       0.0826

The results include the barrier (without any interpolation between highest images) and maximum force at the point in the simulation

[10]:
print(results)
{'barrier': 0.28471736968049277, 'delta_E': -1.6499620869581122e-07, 'max_force': 0.09009922955812238}

We can also plot the band:

[11]:
fig = neb_b.nebtools.plot_band()
v1=WeasWidget()
v1.from_ase(neb_b.nebtools.images)
v1.avr.model_style = 1
v1.avr.show_hydrogen_bonds = True
v1

[11]:
../../_images/tutorials_python_neb_24_1.png

Path c

We can calculate the barrier height along path c similarly

[12]:
n_images = 7
interpolator="pymatgen"

neb_c = NEB(
    init_struct=LFPO_start_bc,
    final_struct=LFPO_end_c,
    n_images=n_images,
    interpolator=interpolator,
    minimize=True,
    fmax=0.1,
    **model_params,
)
Using Materials Project MACE for MACECalculator with /home/runner/.cache/mace/macemp0b3mediummodel
Using float64 for MACECalculator, which is slower but more accurate. Recommended for geometry optimization.
Using head default out of ['default']
/home/runner/work/janus-core/janus-core/.venv/lib/python3.12/site-packages/mace/calculators/mace.py:143: UserWarning: Environment variable TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD detected, since the`weights_only` argument was not explicitly passed to `torch.load`, forcing weights_only=False.
  torch.load(f=model_path, map_location=device)
[13]:
results = neb_c.run()
       Step     Time          Energy          fmax
LBFGS:    0 14:49:45     -759.415355        0.075502
       Step     Time          Energy          fmax
LBFGS:    0 14:49:47     -758.975431        1.930990
LBFGS:    1 14:49:49     -759.140669        0.711958
LBFGS:    2 14:49:51     -759.209571        0.514601
LBFGS:    3 14:49:53     -759.298948        0.404890
LBFGS:    4 14:49:54     -759.316304        0.265548
LBFGS:    5 14:49:56     -759.336518        0.252446
LBFGS:    6 14:49:58     -759.351338        0.330410
LBFGS:    7 14:49:59     -759.368546        0.309163
LBFGS:    8 14:50:01     -759.378014        0.229741
LBFGS:    9 14:50:03     -759.386280        0.221553
LBFGS:   10 14:50:05     -759.395290        0.278156
LBFGS:   11 14:50:07     -759.404981        0.291370
LBFGS:   12 14:50:08     -759.411852        0.192426
LBFGS:   13 14:50:10     -759.415355        0.075502
                   Step     Time         fmax
NEBOptimizer[ode]:    0 14:50:45       2.3204
NEBOptimizer[ode]:    1 14:50:58       1.6499
NEBOptimizer[ode]:    2 14:51:10       0.9977
NEBOptimizer[ode]:    3 14:51:22       0.6537
NEBOptimizer[ode]:    4 14:51:47       0.4186
NEBOptimizer[ode]:    5 14:51:59       0.3969
NEBOptimizer[ode]:    6 14:52:11       0.3176
NEBOptimizer[ode]:    7 14:52:34       0.2998
NEBOptimizer[ode]:    8 14:52:57       0.2690
NEBOptimizer[ode]:    9 14:53:09       0.2608
NEBOptimizer[ode]:   10 14:53:21       0.2293
NEBOptimizer[ode]:   11 14:53:45       0.2186
NEBOptimizer[ode]:   12 14:53:56       0.2622
NEBOptimizer[ode]:   13 14:54:08       0.2009
NEBOptimizer[ode]:   14 14:54:20       0.1946
NEBOptimizer[ode]:   15 14:54:32       0.1883
NEBOptimizer[ode]:   16 14:54:44       0.1653
NEBOptimizer[ode]:   17 14:55:07       0.1600
NEBOptimizer[ode]:   18 14:55:19       0.1538
NEBOptimizer[ode]:   19 14:55:31       0.1475
NEBOptimizer[ode]:   20 14:55:43       0.1379
NEBOptimizer[ode]:   21 14:55:55       0.1346
NEBOptimizer[ode]:   22 14:56:07       0.1288
NEBOptimizer[ode]:   23 14:56:19       0.1263
NEBOptimizer[ode]:   24 14:56:32       0.1169
NEBOptimizer[ode]:   25 14:56:44       0.1806
NEBOptimizer[ode]:   26 14:57:08       0.0821
[14]:
print(results)
{'barrier': 1.7875754406807047, 'delta_E': 4.249613994034007e-09, 'max_force': 0.09762768246406749}
[15]:
fig = neb_c.nebtools.plot_band()
v2=WeasWidget()
v2.from_ase(neb_c.nebtools.images)
v2.avr.model_style = 1
v2.avr.show_hydrogen_bonds = True
v2
[15]:
../../_images/tutorials_python_neb_30_1.png