Source code for janus_core.calculations.md

"""Run molecular dynamics simulations."""

from __future__ import annotations

import datetime
from functools import partial
from itertools import combinations_with_replacement
from math import isclose
from os.path import getmtime
from pathlib import Path
import random
from typing import Any
from warnings import warn

from ase import Atoms, units
from ase.geometry.analysis import Analysis
from ase.io import read
from ase.md.langevin import Langevin
from ase.md.npt import NPT as ASE_NPT
from ase.md.velocitydistribution import (
    MaxwellBoltzmannDistribution,
    Stationary,
    ZeroRotation,
)
from ase.md.verlet import VelocityVerlet
import numpy as np
import yaml

from janus_core.calculations.base import BaseCalculation
from janus_core.calculations.geom_opt import GeomOpt
from janus_core.helpers.janus_types import (
    Architectures,
    ASEReadArgs,
    CorrelationKwargs,
    Devices,
    Ensembles,
    OutputKwargs,
    PathLike,
    PostProcessKwargs,
)
from janus_core.helpers.struct_io import input_structs, output_structs
from janus_core.helpers.utils import none_to_dict, write_table
from janus_core.processing.correlator import Correlation
from janus_core.processing.post_process import compute_rdf, compute_vaf

DENS_FACT = (units.m / 1.0e2) ** 3 / units.mol


[docs] class MolecularDynamics(BaseCalculation): """ Configure shared molecular dynamics simulation options. Parameters ---------- struct : Atoms | None ASE Atoms structure to simulate. Required if `struct_path` is None. Default is None. struct_path : PathLike | None Path of structure to simulate. Required if `struct` is None. Default is None. arch : Architectures MLIP architecture to use for simulation. Default is "mace_mp". device : Devices Device to run MLIP model on. Default is "cpu". model_path : PathLike | None Path to MLIP model. Default is `None`. read_kwargs : ASEReadArgs | None Keyword arguments to pass to ase.io.read. By default, read_kwargs["index"] is -1. calc_kwargs : dict[str, Any] | None Keyword arguments to pass to the selected calculator. Default is {}. set_calc : bool | None Whether to set (new) calculators for structures. Default is None. attach_logger : bool Whether to attach a logger. Default is False. log_kwargs : dict[str, Any] | None Keyword arguments to pass to `config_logger`. Default is {}. track_carbon : bool Whether to track carbon emissions of calculation. Default is True. tracker_kwargs : dict[str, Any] | None Keyword arguments to pass to `config_tracker`. Default is {}. struct : Atoms Structure to simulate. ensemble : Ensembles Name for thermodynamic ensemble. Default is None. steps : int Number of steps in simulation. Default is 0. timestep : float Timestep for integrator, in fs. Default is 1.0. temp : float Temperature, in K. Default is 300. equil_steps : int Maximum number of steps at which to perform optimization and reset velocities. Default is 0. minimize : bool Whether to minimize structure during equilibration. Default is False. minimize_every : int Frequency of minimizations. Default is -1, which disables minimization after beginning dynamics. minimize_kwargs : dict[str, Any] | None Keyword arguments to pass to geometry optimizer. Default is {}. rescale_velocities : bool Whether to rescale velocities. Default is False. remove_rot : bool Whether to remove rotation. Default is False. rescale_every : int Frequency to rescale velocities. Default is 10. file_prefix : PathLike | None Prefix for output filenames. Default is inferred from structure, ensemble, and temperature. restart : bool Whether restarting dynamics. Default is False. restart_auto : bool Whether to infer restart file name if restarting dynamics. Default is True. restart_stem : str Stem for restart file name. Default inferred from `file_prefix`. restart_every : int Frequency of steps to save restart info. Default is 1000. rotate_restart : bool Whether to rotate restart files. Default is False. restarts_to_keep : int Restart files to keep if rotating. Default is 4. final_file : PathLike | None File to save final configuration at each temperature of similation. Default inferred from `file_prefix`. stats_file : PathLike | None File to save thermodynamical statistics. Default inferred from `file_prefix`. stats_every : int Frequency to output statistics. Default is 100. traj_file : PathLike | None Trajectory file to save. Default inferred from `file_prefix`. traj_append : bool Whether to append trajectory. Default is False. traj_start : int Step to start saving trajectory. Default is 0. traj_every : int Frequency of steps to save trajectory. Default is 100. temp_start : float | None Temperature to start heating, in K. Default is None, which disables heating. temp_end : float | None Maximum temperature for heating, in K. Default is None, which disables heating. temp_step : float | None Size of temperature steps when heating, in K. Default is None, which disables heating. temp_time : float | None Time between heating steps, in fs. Default is None, which disables heating. write_kwargs : OutputKwargs | None Keyword arguments to pass to `output_structs` when saving trajectory and final files. Default is {}. post_process_kwargs : PostProcessKwargs | None Keyword arguments to control post-processing operations. correlation_kwargs : CorrelationKwargs | None Keyword arguments to control on-the-fly correlations. seed : int | None Random seed used by numpy.random and random functions, such as in Langevin. Default is None. Attributes ---------- dyn : Dynamics Dynamics object to run simulation. n_atoms : int Number of atoms in structure being simulated. restart_files : list[PathLike] List of files saved to restart dynamics. offset : int Number of previous steps if restarting simulation. created_final : bool Whether the final structure file has been created. Methods ------- run() Run molecular dynamics simulation and/or heating ramp. get_stats() Get thermodynamical statistics to be written to file. """
[docs] def __init__( self, struct: Atoms | None = None, struct_path: PathLike | None = None, arch: Architectures = "mace_mp", device: Devices = "cpu", model_path: PathLike | None = None, read_kwargs: ASEReadArgs | None = None, calc_kwargs: dict[str, Any] | None = None, set_calc: bool | None = None, attach_logger: bool = False, log_kwargs: dict[str, Any] | None = None, track_carbon: bool = True, tracker_kwargs: dict[str, Any] | None = None, ensemble: Ensembles | None = None, steps: int = 0, timestep: float = 1.0, temp: float = 300, equil_steps: int = 0, minimize: bool = False, minimize_every: int = -1, minimize_kwargs: dict[str, Any] | None = None, rescale_velocities: bool = False, remove_rot: bool = False, rescale_every: int = 10, file_prefix: PathLike | None = None, restart: bool = False, restart_auto: bool = True, restart_stem: PathLike | None = None, restart_every: int = 1000, rotate_restart: bool = False, restarts_to_keep: int = 4, final_file: PathLike | None = None, stats_file: PathLike | None = None, stats_every: int = 100, traj_file: PathLike | None = None, traj_append: bool = False, traj_start: int = 0, traj_every: int = 100, temp_start: float | None = None, temp_end: float | None = None, temp_step: float | None = None, temp_time: float | None = None, write_kwargs: OutputKwargs | None = None, post_process_kwargs: PostProcessKwargs | None = None, correlation_kwargs: list[CorrelationKwargs] | None = None, seed: int | None = None, ) -> None: """ Initialise molecular dynamics simulation configuration. Parameters ---------- struct : Atoms | None ASE Atoms structure to simulate. Required if `struct_path` is None. Default is None. struct_path : PathLike | None Path of structure to simulate. Required if `struct` is None. Default is None. arch : Architectures MLIP architecture to use for simulation. Default is "mace_mp". device : Devices Device to run MLIP model on. Default is "cpu". model_path : PathLike | None Path to MLIP model. Default is `None`. read_kwargs : ASEReadArgs | None Keyword arguments to pass to ase.io.read. By default, read_kwargs["index"] is -1. calc_kwargs : dict[str, Any] | None Keyword arguments to pass to the selected calculator. Default is {}. set_calc : bool | None Whether to set (new) calculators for structures. Default is None. attach_logger : bool Whether to attach a logger. Default is False. log_kwargs : dict[str, Any] | None Keyword arguments to pass to `config_logger`. Default is {}. track_carbon : bool Whether to track carbon emissions of calculation. Default is True. tracker_kwargs : dict[str, Any] | None Keyword arguments to pass to `config_tracker`. Default is {}. ensemble : Ensembles Name for thermodynamic ensemble. Default is None. steps : int Number of steps in simulation. Default is 0. timestep : float Timestep for integrator, in fs. Default is 1.0. temp : float Temperature, in K. Default is 300. equil_steps : int Maximum number of steps at which to perform optimization and reset velocities. Default is 0. minimize : bool Whether to minimize structure during equilibration. Default is False. minimize_every : int Frequency of minimizations. Default is -1, which disables minimization after beginning dynamics. minimize_kwargs : dict[str, Any] | None Keyword arguments to pass to geometry optimizer. Default is {}. rescale_velocities : bool Whether to rescale velocities. Default is False. remove_rot : bool Whether to remove rotation. Default is False. rescale_every : int Frequency to rescale velocities. Default is 10. file_prefix : PathLike | None Prefix for output filenames. Default is inferred from structure, ensemble, and temperature. restart : bool Whether restarting dynamics. Default is False. restart_auto : bool Whether to infer restart file name if restarting dynamics. Default is True. restart_stem : str Stem for restart file name. Default inferred from `file_prefix`. restart_every : int Frequency of steps to save restart info. Default is 1000. rotate_restart : bool Whether to rotate restart files. Default is False. restarts_to_keep : int Restart files to keep if rotating. Default is 4. final_file : PathLike | None File to save final configuration at each temperature of similation. Default inferred from `file_prefix`. stats_file : PathLike | None File to save thermodynamical statistics. Default inferred from `file_prefix`. stats_every : int Frequency to output statistics. Default is 100. traj_file : PathLike | None Trajectory file to save. Default inferred from `file_prefix`. traj_append : bool Whether to append trajectory. Default is False. traj_start : int Step to start saving trajectory. Default is 0. traj_every : int Frequency of steps to save trajectory. Default is 100. temp_start : float | None Temperature to start heating, in K. Default is None, which disables heating. temp_end : float | None Maximum temperature for heating, in K. Default is None, which disables heating. temp_step : float | None Size of temperature steps when heating, in K. Default is None, which disables heating. temp_time : float | None Time between heating steps, in fs. Default is None, which disables heating. write_kwargs : OutputKwargs | None Keyword arguments to pass to `output_structs` when saving trajectory and final files. Default is {}. post_process_kwargs : PostProcessKwargs | None Keyword arguments to control post-processing operations. correlation_kwargs : list[CorrelationKwargs] | None Keyword arguments to control on-the-fly correlations. seed : int | None Random seed used by numpy.random and random functions, such as in Langevin. Default is None. """ ( read_kwargs, minimize_kwargs, write_kwargs, post_process_kwargs, correlation_kwargs, ) = none_to_dict( read_kwargs, minimize_kwargs, write_kwargs, post_process_kwargs, correlation_kwargs, ) self.ensemble = ensemble self.steps = steps self.timestep = timestep * units.fs self.temp = temp self.equil_steps = equil_steps self.minimize = minimize self.minimize_every = minimize_every self.minimize_kwargs = minimize_kwargs self.rescale_velocities = rescale_velocities self.remove_rot = remove_rot self.rescale_every = rescale_every self.restart = restart self.restart_auto = restart_auto self.restart_stem = restart_stem self.restart_every = restart_every self.rotate_restart = rotate_restart self.restarts_to_keep = restarts_to_keep self.final_file = final_file self.stats_file = stats_file self.stats_every = stats_every self.traj_file = traj_file self.traj_append = traj_append self.traj_start = traj_start self.traj_every = traj_every self.temp_start = temp_start self.temp_end = temp_end self.temp_step = temp_step self.temp_time = temp_time * units.fs if temp_time else None self.write_kwargs = write_kwargs self.post_process_kwargs = post_process_kwargs self.correlation_kwargs = correlation_kwargs self.seed = seed if "append" in self.write_kwargs: raise ValueError("`append` cannot be specified when writing files") # Check temperatures for heating differ if self.temp_start is not None and self.temp_start == self.temp_end: raise ValueError("Start and end temperatures must be different") # Warn if attempting to rescale/minimize during dynamics # but equil_steps is too low if rescale_velocities and equil_steps < rescale_every: warn( "Velocities and angular momentum will not be reset during dynamics", stacklevel=2, ) if minimize and equil_steps < minimize_every: warn("Geometry will not be minimized during dynamics", stacklevel=2) # Warn if attempting to remove rotation without resetting velocities if remove_rot and not rescale_velocities: warn( "Rotation will not be removed unless `rescale_velocities` is True", stacklevel=2, ) # Warn if mix of None and not None self.ramp_temp = ( self.temp_start is not None and self.temp_end is not None and self.temp_step and self.temp_time ) if ( self.temp_start is not None or self.temp_end is not None or self.temp_step or self.temp_time ) and not self.ramp_temp: warn( "`temp_start`, `temp_end` and `temp_step` must all be specified for " "heating to run", stacklevel=2, ) # Check validate start and end temperatures if self.ramp_temp and (self.temp_start < 0 or self.temp_end < 0): raise ValueError("Start and end temperatures must be positive") self.write_kwargs.setdefault( "columns", ["symbols", "positions", "momenta", "masses"] ) # Read last image by default read_kwargs.setdefault("index", -1) self.param_prefix = self._set_param_prefix(file_prefix) # Initialise structures and logging super().__init__( calc_name=__name__, struct=struct, struct_path=struct_path, arch=arch, device=device, model_path=model_path, read_kwargs=read_kwargs, sequence_allowed=False, calc_kwargs=calc_kwargs, set_calc=set_calc, attach_logger=attach_logger, log_kwargs=log_kwargs, track_carbon=track_carbon, tracker_kwargs=tracker_kwargs, file_prefix=file_prefix, additional_prefix=self.ensemble, param_prefix=self.param_prefix, ) if not self.struct.calc: raise ValueError("Please attach a calculator to `struct`.") # Set output file names self.final_file = self._build_filename( "final.extxyz", self.param_prefix, filename=self.final_file ) self.stats_file = self._build_filename( "stats.dat", self.param_prefix, filename=self.stats_file ) self.traj_file = self._build_filename( "traj.extxyz", self.param_prefix, filename=self.traj_file ) # If not specified otherwise, save optimized structure consistently with others opt_file = self._build_filename("opt.extxyz", self.param_prefix, filename=None) if "write_kwargs" in self.minimize_kwargs: # Use _build_filename even if given filename to ensure directory exists self.minimize_kwargs["write_kwargs"].setdefault("filename", None) self.minimize_kwargs["write_kwargs"]["filename"] = self._build_filename( "", filename=self.minimize_kwargs["write_kwargs"]["filename"] ).absolute() # Assume if write_kwargs are specified that results should be written self.minimize_kwargs.setdefault("write_results", True) else: self.minimize_kwargs["write_kwargs"] = {"filename": opt_file} # Use MD logger for geometry optimization if self.logger: self.minimize_kwargs["log_kwargs"] = { "filename": self.log_kwargs["filename"], "name": self.logger.name, "filemode": "a", } self.dyn: Langevin | VelocityVerlet | ASE_NPT self.n_atoms = len(self.struct) self.offset = 0 if self.restart: self._prepare_restart() self.restart_files = [] self.created_final_file = False if "masses" not in self.struct.arrays: self.struct.set_masses() if self.seed: np.random.seed(seed) random.seed(seed) self._parse_correlations()
[docs] def _set_info(self) -> None: """Set time in fs, current dynamics step, and density to info.""" time = (self.offset * self.timestep + self.dyn.get_time()) / units.fs step = self.offset + self.dyn.nsteps self.dyn.atoms.info["time_fs"] = time self.dyn.atoms.info["step"] = step try: density = ( np.sum(self.dyn.atoms.get_masses()) / self.dyn.atoms.get_volume() * DENS_FACT ) self.dyn.atoms.info["density"] = density except ValueError: self.dyn.atoms.info["density"] = 0.0
[docs] def _prepare_restart(self) -> None: """Prepare restart files, structure and offset.""" # Check offset can be read from steps try: with open(self.stats_file, encoding="utf8") as stats_file: last_line = stats_file.readlines()[-1].split() try: self.offset = int(last_line[0]) except (IndexError, ValueError) as e: raise ValueError("Unable to read restart file") from e except FileNotFoundError as e: raise FileNotFoundError("Unable to read restart file") from e if self.restart_auto: # Attempt to infer restart file restart_stem = self._restart_stem # Use restart_stem.name otherwise T300.0 etc. counts as extension poss_restarts = restart_stem.parent.glob(f"{restart_stem.name}*.extxyz") try: last_restart = max(poss_restarts, key=getmtime) # Read in last structure self.struct = input_structs( struct_path=last_restart, read_kwargs=self.read_kwargs, sequence_allowed=False, arch=self.arch, device=self.device, model_path=self.model_path, calc_kwargs=self.calc_kwargs, set_calc=True, logger=self.logger, ) # Infer last dynamics step last_stem = last_restart.stem try: # Remove restart_stem from filename # Use restart_stem.name otherwise T300.0 etc. counts as extension self.offset = int(last_stem.split("-")[-1]) # Check "-" not inlcuded in offset assert self.offset > 0 except (ValueError, AssertionError) as e: raise ValueError( f"Unable to infer final dynamics step from {last_restart}" ) from e if self.logger: self.logger.info("Auto restart successful") except IndexError: if self.logger: self.logger.info( "Auto restart failed with stem: %s. Using `struct`", restart_stem, ) # Check files exist to append if not self.stats_file.exists() or not self.traj_file.exists(): raise ValueError( "Statistics and trajectory files must already exist to restart " "simulation" )
[docs] def _rotate_restart_files(self) -> None: """Rotate restart files.""" if len(self.restart_files) > self.restarts_to_keep: path = Path(self.restart_files.pop(0)) path.unlink(missing_ok=True)
[docs] def _set_velocity_distribution(self) -> None: """ Set velocities to current target temperature. Sets Maxwell-Boltzmann velocity distribution, as well as removing centre-of-mass momentum, and (optionally) total angular momentum. """ atoms = self.struct if self.dyn.nsteps >= 0: atoms = self.dyn.atoms MaxwellBoltzmannDistribution(atoms, temperature_K=self.temp) Stationary(atoms) if self.logger: self.logger.info("Velocities reset at step %s", self.dyn.nsteps) if self.remove_rot: ZeroRotation(atoms) if self.logger: self.logger.info("Rotation reset at step %s", self.dyn.nsteps)
[docs] def _reset_velocities(self) -> None: """Reset velocities and (optionally) rotation of system while equilibrating.""" if self.dyn.nsteps < self.equil_steps: self._set_velocity_distribution()
[docs] def _optimize_structure(self) -> None: """Perform geometry optimization.""" if self.dyn.nsteps == 0 or self.dyn.nsteps < self.equil_steps: if self.logger: self.logger.info("Minimizing at step %s", self.dyn.nsteps) optimizer = GeomOpt(self.struct, **self.minimize_kwargs) optimizer.run()
[docs] def _set_param_prefix(self, file_prefix: PathLike | None = None) -> str: """ Set ensemble parameters for output files. Parameters ---------- file_prefix : PathLike | None Prefix for output filenames on class init. If not None, param_prefix = "". Returns ------- str Formatted ensemble parameters, including temp ramp range and/or and MD temp. """ if file_prefix is not None: return "" temperature_prefix = "" if self.temp_start is not None and self.temp_end is not None: temperature_prefix += f"-T{self.temp_start}-T{self.temp_end}" if self.steps > 0: temperature_prefix += f"-T{self.temp}" return temperature_prefix.lstrip("-")
@property def _restart_stem(self) -> str: """ Stem for restart files. Restart files will be named {restart_stem}-{step}.extxyz. If file_prefix is specified, restart_stem will be of the form {file_prefix}-{param_prefix}-res. Returns ------- str Stem for restart files. """ if self.restart_stem is not None: return Path(self.restart_stem) # param_prefix is empty if file_prefix was None on init return Path( "-".join(filter(None, (str(self.file_prefix), self.param_prefix, "res"))) ) @property def _restart_file(self) -> str: """ Restart file name. Returns ------- str File name for restart files. """ step = self.offset + self.dyn.nsteps return self._build_filename( f"{step}.extxyz", prefix_override=self._restart_stem )
[docs] def _parse_correlations(self) -> None: """Parse correlation kwargs into Correlations.""" if self.correlation_kwargs: self._correlations = [Correlation(**cor) for cor in self.correlation_kwargs] else: self._correlations = ()
[docs] def _attach_correlations(self) -> None: """Attach all correlations to self.dyn.""" for i, _ in enumerate(self._correlations): self.dyn.attach( partial(lambda i: self._correlations[i].update(self.dyn.atoms), i), self._correlations[i].update_frequency, )
[docs] def _write_correlations(self) -> None: """Write out the correlations.""" if self._correlations: with open( self._build_filename("cor.dat", self.param_prefix), "w", encoding="utf-8", ) as out_file: data = {} for cor in self._correlations: value, lags = cor.get() data[str(cor)] = {"value": value.tolist(), "lags": lags.tolist()} yaml.dump(data, out_file, default_flow_style=None)
[docs] def get_stats(self) -> dict[str, float]: """ Get thermodynamical statistics to be written to file. Returns ------- dict[str, float] Thermodynamical statistics to be written out. """ e_pot = self.dyn.atoms.get_potential_energy() / self.n_atoms e_kin = self.dyn.atoms.get_kinetic_energy() / self.n_atoms current_temp = e_kin / (1.5 * units.kB) self._set_info() time_now = datetime.datetime.now() real_time = time_now - self.dyn.atoms.info["real_time"] self.dyn.atoms.info["real_time"] = time_now try: volume = self.dyn.atoms.get_volume() pressure = ( -np.trace( self.dyn.atoms.get_stress(include_ideal_gas=True, voigt=False) ) / 3 / units.GPa ) pressure_tensor = ( -self.dyn.atoms.get_stress(include_ideal_gas=True, voigt=True) / units.GPa ) except ValueError: volume = 0.0 pressure = 0.0 pressure_tensor = np.zeros(6) return { "Step": self.dyn.atoms.info["step"], "Real_Time": real_time.total_seconds(), "Time": self.dyn.atoms.info["time_fs"], "Epot/N": e_pot, "EKin/N": e_kin, "T": current_temp, "ETot/N": e_pot + e_kin, "Density": self.dyn.atoms.info["density"], "Volume": volume, "P": pressure, "Pxx": pressure_tensor[0], "Pyy": pressure_tensor[1], "Pzz": pressure_tensor[2], "Pyz": pressure_tensor[3], "Pxz": pressure_tensor[4], "Pxy": pressure_tensor[5], }
@property def unit_info(self) -> dict[str, str]: """ Get units of returned statistics. Returns ------- dict[str, str] Units attached to statistical properties. """ return { "Step": None, "Real_Time": "s", "Time": "fs", "Epot/N": "eV", "EKin/N": "eV", "T": "K", "ETot/N": "eV", "Density": "g/cm^3", "Volume": "A^3", "P": "GPa", "Pxx": "GPa", "Pyy": "GPa", "Pzz": "GPa", "Pyz": "GPa", "Pxz": "GPa", "Pxy": "GPa", } @property def default_formats(self) -> dict[str, str]: """ Default format of returned statistics. Returns ------- dict[str, str] Default formats attached to statistical properties. """ return { "Step": "10d", "Real_Time": ".3f", "Time": "13.2f", "Epot/N": ".8e", "EKin/N": ".8e", "T": ".3f", "ETot/N": ".8e", "Density": ".3f", "Volume": ".8e", "P": ".8e", "Pxx": ".8e", "Pyy": ".8e", "Pzz": ".8e", "Pyz": ".8e", "Pxz": ".8e", "Pxy": ".8e", }
[docs] def _write_header(self) -> None: """Write header for stats file.""" with open(self.stats_file, "a", encoding="utf-8") as stats_file: write_table( "ascii", file=stats_file, units=self.unit_info, **{key: () for key in self.unit_info}, )
[docs] def _write_stats_file(self) -> None: """Write molecular dynamics statistics.""" stats = self.get_stats() # Do not print step 0 for restarts if self.restart and self.dyn.nsteps == 0: return with open(self.stats_file, "a", encoding="utf8") as stats_file: write_table( "ascii", file=stats_file, units=self.unit_info, formats=self.default_formats, print_header=False, **stats, )
[docs] def _write_traj(self) -> None: """Write current structure to trajectory file.""" # Do not save step 0 for restarts if self.restart and self.dyn.nsteps == 0: return if self.dyn.nsteps >= self.traj_start: # Append if restarting or already started writing append = self.restart or ( self.dyn.nsteps > self.traj_start + self.traj_start % self.traj_every ) self._set_info() write_kwargs = self.write_kwargs write_kwargs["filename"] = self.traj_file write_kwargs["append"] = append output_structs( images=self.struct, struct_path=self.struct_path, write_results=True, write_kwargs=write_kwargs, )
[docs] def _write_final_state(self) -> None: """Write the final system state.""" self.struct.info["temperature"] = self.temp if isinstance(self, NPT) and not isinstance(self, NVT_NH): self.struct.info["pressure"] = self.pressure # Append if final file has been created append = self.created_final_file self._set_info() write_kwargs = self.write_kwargs write_kwargs["filename"] = self.final_file write_kwargs["append"] = append output_structs( images=self.struct, struct_path=self.struct_path, write_results=True, write_kwargs=write_kwargs, )
[docs] def _post_process(self) -> None: """Compute properties after MD run.""" # Nothing to do if not any( self.post_process_kwargs.get(kwarg, None) for kwarg in ("rdf_compute", "vaf_compute") ): warn( "Post-processing arguments present, but no computation requested. " "Please set either 'rdf_compute' or 'vaf_compute' " "to do post-processing.", stacklevel=2, ) data = read(self.traj_file, index=":") ana = Analysis(data) if self.post_process_kwargs.get("rdf_compute", False): base_name = self.post_process_kwargs.get("rdf_output_file", None) rdf_args = { name: self.post_process_kwargs.get(key, default) for name, (key, default) in ( ("rmax", ("rdf_rmax", 2.5)), ("nbins", ("rdf_nbins", 50)), ("elements", ("rdf_elements", None)), ("by_elements", ("rdf_by_elements", False)), ) } slice_ = ( self.post_process_kwargs.get("rdf_start", len(data) - 1), self.post_process_kwargs.get("rdf_stop", len(data)), self.post_process_kwargs.get("rdf_step", 1), ) rdf_args["index"] = slice_ if rdf_args["by_elements"]: elements = ( tuple(sorted(set(data[0].get_chemical_symbols()))) if rdf_args["elements"] is None else rdf_args["elements"] ) out_paths = [ self._build_filename( "rdf.dat", self.param_prefix, "_".join(element), prefix_override=base_name, ) for element in combinations_with_replacement(elements, 2) ] else: out_paths = [ self._build_filename( "rdf.dat", self.param_prefix, prefix_override=base_name ) ] compute_rdf(data, ana, filenames=out_paths, **rdf_args) if self.post_process_kwargs.get("vaf_compute", False): file_name = self.post_process_kwargs.get("vaf_output_file", None) use_vel = self.post_process_kwargs.get("vaf_velocities", False) fft = self.post_process_kwargs.get("vaf_fft", False) out_path = self._build_filename( "vaf.dat", self.param_prefix, filename=file_name ) slice_ = ( self.post_process_kwargs.get("vaf_start", 0), self.post_process_kwargs.get("vaf_stop", None), self.post_process_kwargs.get("vaf_step", 1), ) compute_vaf( data, out_path, use_velocities=use_vel, fft=fft, index=slice_, filter_atoms=self.post_process_kwargs.get("vaf_atoms", None), )
[docs] def _write_restart(self) -> None: """Write restart file and (optionally) rotate files saved.""" step = self.offset + self.dyn.nsteps if step > 0: write_kwargs = self.write_kwargs write_kwargs["filename"] = self._restart_file self._set_info() output_structs( images=self.struct, struct_path=self.struct_path, write_results=True, write_kwargs=write_kwargs, ) if self.rotate_restart: self.restart_files.append(self._restart_file) self._rotate_restart_files()
[docs] def run(self) -> None: """Run molecular dynamics simulation and/or temperature ramp.""" if not self.restart: if self.minimize: self._optimize_structure() if self.rescale_velocities: self._reset_velocities() if self.offset == 0: self._write_header() self.dyn.attach(self._write_stats_file, interval=self.stats_every) self.dyn.attach(self._write_traj, interval=self.traj_every) self.dyn.attach(self._write_restart, interval=self.restart_every) self._attach_correlations() if self.rescale_velocities: self.dyn.attach(self._reset_velocities, interval=self.rescale_every) if self.minimize and self.minimize_every > 0: self.dyn.attach(self._optimize_structure, interval=self.minimize_every) # Note current time self.struct.info["real_time"] = datetime.datetime.now() self._run_dynamics() if self.post_process_kwargs: self._post_process() self._write_correlations()
[docs] def _run_dynamics(self) -> None: """Run dynamics and/or temperature ramp.""" # Store temperature for final MD md_temp = self.temp if self.ramp_temp: self.temp = self.temp_start # Set velocities to match current temperature self._set_velocity_distribution() # Run temperature ramp if self.ramp_temp: heating_steps = int(self.temp_time // self.timestep) # Always include start temperature in ramp, and include end temperature # if separated by an integer number of temperature steps n_temps = int(1 + abs(self.temp_end - self.temp_start) // self.temp_step) # Add or subtract temperatures ramp_sign = 1 if (self.temp_end - self.temp_start) > 0 else -1 temps = [ self.temp_start + ramp_sign * i * self.temp_step for i in range(n_temps) ] if self.logger: self.logger.info("Beginning temperature ramp at %sK", temps[0]) if self.tracker: self.tracker.start_task("Temperature ramp") for temp in temps: self.temp = temp self._set_velocity_distribution() if isclose(temp, 0.0): self._write_final_state() self.created_final_file = True continue if not isinstance(self, NVE): self.dyn.set_temperature(temperature_K=self.temp) self.dyn.run(heating_steps) self._write_final_state() self.created_final_file = True if self.logger: self.logger.info("Temperature ramp complete at %sK", temps[-1]) if self.tracker: emissions = self.tracker.stop_task().emissions self.struct.info["emissions"] = emissions # Run MD if self.steps > 0: if self.logger: self.logger.info("Starting molecular dynamics simulation") if self.tracker: self.tracker.start_task("Molecular dynamics") self.temp = md_temp if self.ramp_temp: self._set_velocity_distribution() if not isinstance(self, NVE): self.dyn.set_temperature(temperature_K=self.temp) self.dyn.run(self.steps) self._write_final_state() self.created_final_file = True if self.logger: self.logger.info("Molecular dynamics simulation complete") if self.tracker: emissions = self.tracker.stop_task().emissions self.struct.info["emissions"] = emissions self.tracker.stop()
[docs] class NPT(MolecularDynamics): """ Configure NPT dynamics. Parameters ---------- *args Additional arguments. thermostat_time : float Thermostat time, in fs. Default is 50.0. barostat_time : float Barostat time, in fs. Default is 75.0. bulk_modulus : float Bulk modulus, in GPa. Default is 2.0. pressure : float Pressure, in GPa. Default is 0.0. ensemble : Ensembles Name for thermodynamic ensemble. Default is "npt". file_prefix : PathLike | None Prefix for output filenames. Default is inferred from structure, ensemble, temperature, and pressure. ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. Attributes ---------- dyn : Dynamics Configured NPT dynamics. """
[docs] def __init__( self, *args, thermostat_time: float = 50.0, barostat_time: float = 75.0, bulk_modulus: float = 2.0, pressure: float = 0.0, ensemble: Ensembles = "npt", file_prefix: PathLike | None = None, ensemble_kwargs: dict[str, Any] | None = None, **kwargs, ) -> None: """ Initialise dynamics for NPT simulation. Parameters ---------- *args Additional arguments. thermostat_time : float Thermostat time, in fs. Default is 50.0. barostat_time : float Barostat time, in fs. Default is 75.0. bulk_modulus : float Bulk modulus, in GPa. Default is 2.0. pressure : float Pressure, in GPa. Default is 0.0. ensemble : Ensembles Name for thermodynamic ensemble. Default is "npt". file_prefix : PathLike | None Prefix for output filenames. Default is inferred from structure, ensemble, temperature, and pressure. ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. """ self.pressure = pressure super().__init__(*args, ensemble=ensemble, file_prefix=file_prefix, **kwargs) (ensemble_kwargs,) = none_to_dict(ensemble_kwargs) self.ttime = thermostat_time * units.fs if barostat_time: pfactor = barostat_time**2 * bulk_modulus if self.logger: self.logger.info("NPT pfactor=%s GPa fs^2", pfactor) # convert the pfactor to ASE internal units pfactor *= units.fs**2 * units.GPa else: pfactor = None self.dyn = ASE_NPT( self.struct, timestep=self.timestep, temperature_K=self.temp, ttime=self.ttime, pfactor=pfactor, append_trajectory=self.traj_append, externalstress=self.pressure * units.GPa, **ensemble_kwargs, )
[docs] def _set_param_prefix(self, file_prefix: PathLike | None = None) -> str: """ Set ensemble parameters for output files. Parameters ---------- file_prefix : PathLike | None Prefix for output filenames on class init. If not None, param_prefix = "". Returns ------- str Formatted ensemble parameters, including pressure and temperature(s). """ if file_prefix is not None: return "" pressure = f"-p{self.pressure}" if not isinstance(self, NVT_NH) else "" return f"{super()._set_param_prefix(file_prefix)}{pressure}"
[docs] def get_stats(self) -> dict[str, float]: """ Get thermodynamical statistics to be written to file. Returns ------- dict[str, float] Thermodynamical statistics to be written out. """ stats = MolecularDynamics.get_stats(self) stats |= {"Target_P": self.pressure, "Target_T": self.temp} return stats
@property def unit_info(self) -> dict[str, str]: """ Get units of returned statistics. Returns ------- dict[str, str] Units attached to statistical properties. """ return super().unit_info | {"Target_P": "GPa", "Target_T": "K"} @property def default_formats(self) -> dict[str, str]: """ Default format of returned statistics. Returns ------- dict[str, str] Default formats attached to statistical properties. """ return super().default_formats | {"Target_P": ".5f", "Target_T": ".5f"}
[docs] class NVT(MolecularDynamics): """ Configure NVT simulation. Parameters ---------- *args Additional arguments. friction : float Friction coefficient in fs^-1. Default is 0.005. ensemble : Ensembles Name for thermodynamic ensemble. Default is "nvt". ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. Attributes ---------- dyn : Dynamics Configured NVT dynamics. """
[docs] def __init__( self, *args, friction: float = 0.005, ensemble: Ensembles = "nvt", ensemble_kwargs: dict[str, Any] | None = None, **kwargs, ) -> None: """ Initialise dynamics for NVT simulation. Parameters ---------- *args Additional arguments. friction : float Friction coefficient in fs^-1. Default is 0.005. ensemble : Ensembles Name for thermodynamic ensemble. Default is "nvt". ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. """ super().__init__(*args, ensemble=ensemble, **kwargs) (ensemble_kwargs,) = none_to_dict(ensemble_kwargs) self.dyn = Langevin( self.struct, timestep=self.timestep, temperature_K=self.temp, friction=friction / units.fs, append_trajectory=self.traj_append, **ensemble_kwargs, )
[docs] def get_stats(self) -> dict[str, float]: """ Get thermodynamical statistics to be written to file. Returns ------- dict[str, float] Thermodynamical statistics to be written out. """ stats = MolecularDynamics.get_stats(self) stats |= {"Target_T": self.temp} return stats
@property def unit_info(self) -> dict[str, str]: """ Get units of returned statistics. Returns ------- dict[str, str] Units attached to statistical properties. """ return super().unit_info | {"Target_T": "K"} @property def default_formats(self) -> dict[str, str]: """ Default format of returned statistics. Returns ------- dict[str, str] Default formats attached to statistical properties. """ return super().default_formats | {"Target_T": ".5f"}
[docs] class NVE(MolecularDynamics): """ Configure NVE simulation. Parameters ---------- *args Additional arguments. ensemble : Ensembles Name for thermodynamic ensemble. Default is "nve". ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. Attributes ---------- dyn : Dynamics Configured NVE dynamics. """
[docs] def __init__( self, *args, ensemble: Ensembles = "nve", ensemble_kwargs: dict[str, Any] | None = None, **kwargs, ) -> None: """ Initialise dynamics for NVE simulation. Parameters ---------- *args Additional arguments. ensemble : Ensembles Name for thermodynamic ensemble. Default is "nve". ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. """ super().__init__(*args, ensemble=ensemble, **kwargs) (ensemble_kwargs,) = none_to_dict(ensemble_kwargs) self.dyn = VelocityVerlet( self.struct, timestep=self.timestep, append_trajectory=self.traj_append, **ensemble_kwargs, )
[docs] class NVT_NH(NPT): # noqa: N801 (invalid-class-name) """ Configure NVT Nosé-Hoover simulation. Parameters ---------- *args Additional arguments. thermostat_time : float Thermostat time, in fs. Default is 50.0. ensemble : Ensembles Name for thermodynamic ensemble. Default is "nvt-nh". ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. """
[docs] def __init__( self, *args, thermostat_time: float = 50.0, ensemble: Ensembles = "nvt-nh", ensemble_kwargs: dict[str, Any] | None = None, **kwargs, ) -> None: """ Initialise dynamics for NVT simulation. Parameters ---------- *args Additional arguments. thermostat_time : float Thermostat time, in fs. Default is 50.0. ensemble : Ensembles Name for thermodynamic ensemble. Default is "nvt-nh". ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. """ (ensemble_kwargs,) = none_to_dict(ensemble_kwargs) super().__init__( *args, ensemble=ensemble, thermostat_time=thermostat_time, barostat_time=None, ensemble_kwargs=ensemble_kwargs, **kwargs, )
[docs] def get_stats(self) -> dict[str, float]: """ Get thermodynamical statistics to be written to file. Returns ------- dict[str, float] Thermodynamical statistics to be written out. """ stats = MolecularDynamics.get_stats(self) stats |= {"Target_T": self.temp} return stats
@property def unit_info(self) -> dict[str, str]: """ Get units of returned statistics. Returns ------- dict[str, str] Units attached to statistical properties. """ return super().unit_info | {"Target_T": "K"} @property def default_formats(self) -> dict[str, str]: """ Default format of returned statistics. Returns ------- dict[str, str] Default formats attached to statistical properties. """ return super().default_formats | {"Target_T": ".5f"}
[docs] class NPH(NPT): """ Configure NPH simulation. Parameters ---------- *args Additional arguments. thermostat_time : float Thermostat time, in fs. Default is 50.0. bulk_modulus : float Bulk modulus, in GPa. Default is 2.0. pressure : float Pressure, in GPa. Default is 0.0. ensemble : Ensembles Name for thermodynamic ensemble. Default is "nph". file_prefix : PathLike | None Prefix for output filenames. Default is inferred from structure, ensemble, temperature, and pressure. ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. Attributes ---------- dyn : Dynamics Configured NVE dynamics. """
[docs] def __init__( self, *args, thermostat_time: float = 50.0, bulk_modulus: float = 2.0, pressure: float = 0.0, ensemble: Ensembles = "nph", file_prefix: PathLike | None = None, ensemble_kwargs: dict[str, Any] | None = None, **kwargs, ) -> None: """ Initialise dynamics for NPH simulation. Parameters ---------- *args Additional arguments. thermostat_time : float Thermostat time, in fs. Default is 50.0. bulk_modulus : float Bulk modulus, in GPa. Default is 2.0. pressure : float Pressure, in GPa. Default is 0.0. ensemble : Ensembles Name for thermodynamic ensemble. Default is "nph". file_prefix : PathLike | None Prefix for output filenames. Default is inferred from structure, ensemble, temperature, and pressure. ensemble_kwargs : dict[str, Any] | None Keyword arguments to pass to ensemble initialization. Default is {}. **kwargs Additional keyword arguments. """ (ensemble_kwargs,) = none_to_dict(ensemble_kwargs) super().__init__( *args, thermostat_time=thermostat_time, barostat_time=None, bulk_modulus=bulk_modulus, pressure=pressure, ensemble=ensemble, file_prefix=file_prefix, ensemble_kwargs=ensemble_kwargs, **kwargs, )